Education.com
Try
Brainzy
Try
Plus

Cooperative Learning is a Brain Turn-On (page 2)

By — Educational Resource Information Center (U.S. Department of Education)
Updated on Feb 18, 2011

Neuroimaging Watching the Social Brain Learn

Neuroimaging and neurochemical investigation provide evidence of the brains response to stress as well as to pleasure and positive social interaction. Research on the amygdala reveals it to be one location of an affective filter in the brain (Pawlak, Magarinos, Melchor, McEwen, & Strickland, 2003). During periods of high stress or anxiety that some students may experience when asked to do a math problem on the board or make an oral presentation to the class, their emotional state is associated with greatly heightened metabolism (more glucose and oxygen use) flooding this emotional portion of the limbic system on Functional Magnetic Resonance Imaging (fMRI) studies.

When the amygdala is in this hyperexcitable, anxiety-provoked state, there is profound reduction in the neural activity indicative of information flow into and out of the amygdala. In the normal, relaxed state, the brain receives information as sensory input (e.g., for hearing or vision) into specific sensory receptive centers. From these areas, neural pathways project this information to the amygdala. In the amygdala emotional meaning may be linked to the information and connections are made with previously stored, related knowledge (Chugani & Phelps, 1991). The new information, now enhanced with emotional or relational data, then travels along specific neuronal circuits to the higher cognitive centers of the brain, such as the prefrontal cortex, where information is processed, associated, and stored for later retrieval and executive functioning (Kato & McEwen, 2003).

In fMRI scans of adolescents in states of affective, emotional anxiety, when the amygdala is metabolically hyperactive, the pathways that normally conduct information in and out of the amygdala show greatly reduced activity. Thus, new information is blocked from entering the memory banks by this metabolic blockade of the hyperactive amygdala (Toga & Thompson, 2003).

When students participate in engaging learning activities in well-designed, supportive cooperative groups, their affective filters are not blocking the flow of information. When you plan your group so that each members strengths have authentic importance to the ultimate success of the groups activity, you have created a situation where individual learning styles, skills, and talents are valued, and students shine in their fortes and learn from each other in the areas where they are not as expert. They call on each others guidance to solve pertinent and compelling problems and develop their interpersonal skills by communicating their ideas to partners. The brain scans of subjects learning in this type of supportive and social learning situation show facilitated passage of information from the intake areas into the memory storage regions of the brain. This is consistent with the original cognitive psychology research and theories of Krashen (1982) about the affective filter that learning associated with positive emotion is retained longer and visa versa.

Reward-Stimulated Cooperative Learning

Studies of brain neurochemistry also support the benefit of associating rewarding, positive social experiences with the learning process. This has been called dopamine-based reward-stimulated learning (Waelti, Dickinson, & Schultz, 2001). Information travels along nerve cells branching and communicating sprouts (axons and dendrites) as electrical impulses. However, where these sprouting arms connect to the next neuron in the circuit, the information has to travel through a gap between the end of one nerve and the beginning of the next one. In these gaps, called synapses, there are no physical structures, unlike the wires that connect appliances to electric outlets, along which the electric impulses can travel. When crossing over synaptic gaps, the information impulse must be temporarily converted from an electric one into a chemical one. Neurotransmitters are brain proteins released by the electrical impulse on one side of the synapse, to then float across the synaptic gap, carrying the information with them to stimulate the next nerve ending in the pathway. Once the neurotransmitter is taken up by the next nerve ending, the electric impulse is reactivated to travel along to the next nerve cell.

Dopamine is the chemical neurotransmitter most closely associated with attention, memory storage, comprehension, and executive function. The theory of reward-stimulated learning and other reinforcement learning theories are based on the assumption that the brain finds some states of stimulation to be more desirable than others. The brain is believed to make associations between specific cues and these desirable states or goals. Dopamine activity can be evaluated through neuroimaging. It has been found that dopamine release is increased in brain centers associated with learning and memory in response to rewards and positive experiences. Research found that the brain released more dopamine into these learning circuits when the individual was playing, laughing, exercising, and receiving acknowledgement(e.g., praise) for achievement (Salamone & Correa, 2002).

These frontal lobe, dopamine-sensitive regions are seen on neuroimaging as activated in pleasure and reward, wakefulness, and satiety. It has been shown that drugs of abuse affect nerves along this dopamine pathway. This is a basis for theories that when the brain does not release its own dopamine reward from pleasurable experiences it is vulnerable to the allure of the psychoactive drugs that activate the dopamine pathway (Everitt, Parkinson, Olmstead, Arroyo, Robledo, & Robbins, 1999). Follow up research found that when subjects anticipatedpleasurable states, there was increased release of dopamine associated with the expectation of pleasure (Holroyd, Larsen, & Cohen, 2004).

Many of the motivating factors that have been found to release this dopamine are intrinsic to successful cooperative group work such as social collaboration, motivation, and expectation of success, or authentic praise from peers. Because dopamine is also the neurotransmitter associated with attention, memory, learning, and executive function, it follows that when the brain releases dopamine during or in expectation of a pleasurable experience or reward, this dopamine will be available to increase the processing of new information. That is what occurs when students enjoy a positive cooperative learning experience, and even when they anticipate participation in that type of activity.

Cooperative Groups Generate More Participation and Stimulate Multiple Brain Regions

Cooperative group activities, unlike whole class discussions or independent work, provide the most opportunities for students to express their ideas, questions, conclusions, and associations verbally. Gibbs (1995), in her book Tribesreported that in traditionally structured classes each student has about five to ten minutes of individual time to engage in classroom academic discourse. In group work, that amount of time increases dramatically. She found that students experienced a greater level of understanding of concepts and ideas when they talked, explained, and argued about them with their group, instead of just passively listening to a lecture or reading a text.

In addition, metabolic brain activity accelerates during active constructive thinking, such as planning, gathering data, analyzing, inferring, and strategizing versus passive information acquisition. When the verbal center becomes engaged while information or a task is being learned, more neural activity travels between the left and right brain. (Chugani & Phelps, 1991). Thus, when students describe their thinking verbally to the group or work on a group chart, diagram, or project, the new information becomes embedded in multiple brain sites, such as the auditory and visual memory storage areas. Now, with neuroimaging, we know that this multicentered brain communication circuitry enhances comprehension, making new material be more accessible for future use, because it is stored in redundant brain areas (Giedd, et al., 1999).

In mathematical collaboration, students learn to test one anothers conjectures and identify valid or invalid solutions. Group members are all engaged as they discover techniques to test one members strategy. If it does not work on repeated tries, they invalidate that strategy and try another. Students who just dont get itvia a teachers didactic lecture benefit from the different perspectives of classmates with similar knowledge banks on the subject.

In literature and social studies, students have a small, safer place to try out ideas they might not express to the entire class. They learn that there is validity to personal interpretation, and they can experiment with critical thinking in a structured small-group setting, with scaffolding provided as needed via teacher prompts about what to discuss and how to run the discussion. This process empowers students to become more active not only in whole-class discussions, but also in their homework and in speaking their opinion outside of the classroom. This is especially critical during adolescence when fitting in is such a strong need that individuality can become stifled (Jernigan & Tallal, 1990).

As neuroimaging evidence has shown, the more a student is engaged in a learning activity, especially of the brain are actively stimulated (Jagust & Budinger, 1993). When this occurs in a positive emotional setting, without stress and anxiety, the result is greater long-term, relational, and retrievable learning.

What Constitutes Cooperative Work?

To qualify as cooperative work, rather than individuals working in parallel in a group, students must need each other to complete the task. Students are expected to participate in tasks that are clearly constructed and necessary for the groups success. The teacher remains active as a circulating resource and, when necessary, an arbitrator, but students should be capable of carrying out their tasks without constant, direct intrusion by the teacher. Students, not the teacher, are responsible for accomplishing their tasks in the way they think best, with accountability to each other and to the teachers standards. Ideally, there is a clear rubric for individual and group assessment, and the students and the teacher take part in the assessment process (Antil, Jenkins, & Watkins, 1998).

When setting up lessons for successful collaboration in cooperative groups, consider the following guidelines that will then be expanded upon with examples of specific cooperative group activities that emphasize each of the five characteristics.

  • All members have opportunities and capabilities, frontloaded if necessary, such that different students can make their own special contributions. This may require planning ways for students with different learning or intelligence styles to make special contributions to the group task (Webb, Nemer, & Chizhik, 1998).
  • Students learn to respect each other as group members. Often this requires teacher demonstration with role-playing.
  • The group negotiates roles with guidance from the teacher. Designated roles can vary from group to group depending on the nature of the task assigned.
  • There should be more than one answer or more than one way to solve the problem or create the project.
  • The activity should be intrinsically interesting, challenging, and rewarding.

Sample Brain-Friendly Cooperative Projects

Cooperative group activities I have used in my middle school classes have had different emphases and goals, but each also conforms to these basic five characteristics of successful group work. Examples of activities that feature each of the aforementioned successful cooperative group guidelines follow.

All members have opportunities to make valued contributions to the group product
Dinosaur ExtinctionScience and Math (extinction theory and scientific notation):

In this activity students are each given an area of expertise that other group members do not have so they are valued for this information. This is a type of frontloading. This increases each students connection to the group socially and academically, thereby lowering their affective filters. Because there are elements of choice and real-world application, the information students process is patterned with relational memories in the hippocampus and prefrontal lobes for successful storage as long-term memory.

In the dinosaur project, the final process of making informed individual decisions about which extinction theory the student chooses to support brings in frontal lobe executive functions. The group project also incorporates and values multiple skills and talents. This results in more opportunity for students to connect and succeed through their individual learning styles and to engage more of their brains with multisensory stimulation.

Through a strategy called tea party, card party, or jigsaw, students are first put in groups where all five members of the group read articles and text about one of the dinosaur extinction theories, which include:

  • Creataceous-Tertiary Asteroid Theory(about 65 million years ago): This theory also previews the next topic we will study in geography, continental drift, and the splitting of the supercontinent Pangaea.
  • K-T Extinction(about 65 million years ago): K is for Kreide, meaning chalk in German, which describes the chalky sediment layer from that time; T is for Tertiary, the next geologic period, when all land animals over about 55 pounds went extinct.
  • The Alvarez Asteroid Impact Theory:An asteroid four to nine miles in diameter hit Earth about 65 million years ago, penetrated the Earth's crust, scattered dust and debris into the atmosphere, and caused huge fires, tsunamis, severe storms with high winds and highly acidic rain, seismic activity, and perhaps even volcanic activity.
  • Greenhouse Effect:Large amounts of methane, changing the Earths atmosphere, caused a greenhouse effect. The methane source is theorized to have come from deep-sea algae deposits and/or from by-products of plant-eating dinosaurs digestion.
  • Over-foraging:The herbivorous dinosaurs over- foraging and the carnivorous dinosaurs over- culling of the herbivorous dinosaurs could have triggered mass starvation.

After the first groupswhich have become expert in one of the five theories of extinctionhave read about, discussed, and answered questions I provided, and each group member has completed notes that I reviewed with answers to the questions, the groups are shuffled to form new groups. Each of these secondary groups is the true cooperative group, and each group member is now an expert on one extinction theory.

Group Project:
  1. Each group member explains his or her extinction theory while others take notes.
  2. After open-ended, student-inspired discussions, each member selects the theory he or she feels best explains dinosaur extinction.
  3. Through vote or consensus (a process they have practiced) the group selects the theory they will use for their project.
  4. Groups can demonstrate their theory through a skit, report, PowerPoint presentation, overhead projector charts, a video production, models, or several of these options.
  5. Each group must include mathematics using scientific notation with exponents for the very large numbers involved in dinosaur research, such as 50 million is 5.0 x 10 to the 7th power.
  6. Groups present their findings to the class and complete self- and group analysis reports on rubrics provided.
  7. Individual and group grades are based on teacher observations, final products and cooperative behavior.
Students respect each other Quiz ShowHelping Students Grow More Brain Connections:

Review, practice, and cognitive processing of learned information builds more connecting dendrites and strengthens the membranes surrounding these interneural connections resulting in faster information transport and more efficient memory retrieval.

Using a television quiz show format, students are divided into four teams. Each team works with the same information source, the class literature text from which they took notes for homework. In addition to the group task of creating quiz show questions for their opponents, there is a specific group job for each student. This question-making activity occurs several times a week, using the material from several chapters each time.

The final competition takes place on completion of the book and serves as a third review of the material before the formal individual comprehension assessments. The three reviews consist of the students first set of notes taken at home independently, the cooperative quiz-making sessions, and, finally, the quiz show itself.

The individual jobs rotate each time the group meets. They include scribe(writes down questions and answers that the group approves) and materials coordinator(makes sure all students bring their books and notes and get the clipboards with previous questions out of the bin). Other jobs are judge(when the group disagrees about whether a proposed question is satisfactory for the quiz show, the judge makes the final ruling, but must back up this opinion with reasons), cooperative overseer(takes notes on cooperative behavior to give the group feedback at the end of the session and reminds students to follow the cooperative rules already set and posted, such as not interrupting and all participate). The analystkeeps track of the groups reasons for rejecting questions. These are also reviewed at the end of the session with the expectation that the metacognition will result in improvement.

Through this cooperative activity, neuronal network reinforcement of the reviewed material is more engaging. The group processing of text material offers another modality of information input, thereby making the knowledge more accessible for students with varied learning style preferences: auditory, visual, kinesthetic (movement during the quiz show), and interpersonal.

The group negotiates roles with teacher guidance Lincoln-Douglas Debate:

Group work involving skits, demonstrations, debates, or other dramatizations appeals to the kinetic, verbal, and interpersonal strengths of many students, especially in middle school when energy levels run high and passive sitting in classrooms with directed lectures can be the best way to lose students attention. Academics are not usually the first priority during adolescence, and dramatizations as part of group work can bring variety and harness energy, and teacher supervised socializing activities in a safe classroom community can increase belonging and confidence. When students observe modeling and then practice the skills needed for successful group work, they are able to build their skills of self- control, managing their emotions, and cooperating and resolving conflicts with others while building executive function, all in a positive emotional state for building emotion links to academic learning.

Dramatizations have the added benefit of activating regions of the brain where prior relational memories are stored. The personal meaning inherent in dramatization results in more opportunities for new information to be connected by the relational memory hook-ups that enhance patterning and retention.

Students work in groups, using their individual skills and interests, to put on a political campaign supporting Lincoln or Douglas through posters, political cartoons, oral debates, skits, and computer or video ads. This project requires students to work together to negotiate rules for campaigning, rules for debating, and rules for scoring the debates. Students also need to negotiate with group members for who does which activity such as portraying Lincoln, making campaign posters, directing the campaign video.

The teacher determines how many students can work together on some of these activities, but the students must first prepare a plan (prioritizing, organizing, and judgment skills) to show for which part of the poster or video each individual will be responsible. For the final debates (there can be several sets of debates, depending on size of the class and of the groups) other teachers can be brought in as judges, and the students give them the scoring criteria that were finally agreed upon by compromise and consensus.

Designated, rotating individual roles within the group can include recorder, participation monitor (someone who keeps track of who is participating such that if one member has already given three suggestions and others have not had a chance, the overly active participant is asked to give others time to present their views), creative director(if a physical product such as a poster or computer presentation is part of the project), materials director, accountant,and secretaryas needed and with similar duties as described for the quiz show groups.

There is more than one answer or way to solve the problem What Is Life?Group Problem Analysis:

Bringing in all students from the beginning of a unit of study increases relational memory. By presenting the big picturethrough a comprehensive experience that links with some area of student interest, past experience, or real-world connections, relational memories are triggered and the hippocampus is activated on brain scan as the site where connections are made with the new information that allow it to be coded into recognizable and storable patterns.

For example, if the initial presentation of a new unit incorporates sports, popular music, and audiovisual technology, at least one of these will resonate with most middle school students through their primary or secondary learning strengths or interests. This initial exposure to the topic will stimulate their connection to the lessons that follow, because they were engaged early by linking the unit to their interests or personal experiences.

Starting with an innovative presentation such as a recent newspaper report, guest speaker, or by posing a thought-provoking question through a demonstration, teachers can all engage students. An example is the engaging and personally relevant introduction to a biology unit, prompting students to define what it means to be alive. I ask students in cooperative groups to define what constitutes a living organism and to record their responses. They then practice prioritizing and ordering executive function skills as well as the social skill of reaching a consensus as they decide as a group what characteristics of being alive are most significant in defining life. I then give each group a candle that I light and ask them to see if the flame fits the list of functions that define living things. They then refer to their lists, which usually include: consume oxygen or carbon dioxide, reproduce, react, and has a beginning and a termination. The next question for them to debate as a group usually presents a curious problem. If the flame fits with the generated list of characteristics for living things, does that mean the flame is alive? Why or why not?

Students are authentically engaged when they start making personal connections and asking questions that relate the initial experience to concrete references or abstract connections. Students will have valid responses that they will be motivated to share because they are personally touched in some way.

Once students are connected to the topic through their discussions, they are ready to be engaged in the study of single cell organisms because they are in a low stress, high interest state with unrestricted affective filters and increased release of dopamine.

The activity should be intrinsically interesting, challenging, and rewarding

Cornucopia Project:Early engagement of attention through multisensory experiences and high personal interest is well suited to the multisensory, fast-paced world of adolescents who have grown up in the personal technology age. This middle school American history activity coincides with the study of lifestyles of early settlers in the Colonies and works especially well if done near Thanksgiving.

Classroom visitors, costumes, and food are of high interest to students in any grade, and this activity always resonates with one or more interests of the middle school students who have participated in it. For the big picture or global introduction to the unit, we start with a guest speaker from the community. One year we invited the director of the local farmers markets and food stylist. Without any advance notice (to incorporate surprise and novelty) she entered the class in colonial attire with a large basket of produce indigenous to the early New England Colonies. First, she gave the students several unfamiliar vegetables to taste. Distributing this food let the students know it would be an interactive experience and kept them fed so that they would not focus on any hunger prompted by looking at the food. Next, she said, You have been told not to play with your food, but today we will play with food. Using humor and, again, surprise she won their trust and kept their attention. The promise of play with food also alerted the interest of the tactile-kinesthetic learners and AD/HD students.

Her presentation continued with demonstrations of how to cut and display foods to make them look more appealing. She explained which foods were the first ones available for either gathering or planting by the colonists, and she finished by demonstrating the construction of a cornucopia. She preceded this demonstration with the assurance that the students would have an opportunity to make their own cornucopias as soon as she finished.

This confirmation of a desirable activity before a passive demonstration is an important strategy to keep the focus of high-energy adolescents because they know that the attention they give at the start will help them be successful in a connected activity that will immediately follow. Increased brain activation takes place when subjects are told they will be asked to repeat or immediately use the information or activity they are about to learn (Sousa, 2000).

When the food designer left, all the students were engaged, enthusiastic, and ready to start building their cornucopias. She left them with fruits and vegetables to make cornucopias using rolled tagboard and extra carrots, radishes, and potatoes for food design carving.

Before making the cornucopias, we had a brainstorm session to connect the mornings speaker and group cornucopia activity to the colonial unit that would follow. The experience had generated interest in the colonial period, and students prepareda list of some of the questions they would still like to ask the speaker. Their questions were compiled on a chart, and questions were added based on their suggestions about other facets of colonial life they believed might be interesting to investigate.

After a brief reminder about cooperative group behavior, fair division of activities, and decision by consensus, students were divided into small groups where they constructed and filled cornucopias. I assigned the students to groups based on their interests, compatibility, and learning strengths. The latter consideration enabled students with limited academic or social skills to participate in groups where their creative or intellectual strengths would be acknowledged as valued contributions to the group project. Depending upon student interest and group consensus, one or two students per group drew a picture of their cornucopia, one student photographed it and posted it on the class Web site, and another student or two researched the origin of horn of plenty and its relation to Greek mythology.

That initial days group activity was low stress and planned for fun, positive emotional connections, flashbulb-connecting memories, and to promote curiosity and interest in the unit to come. It was not, in itself, high in academics and may not have added many facts to students rote memory file with which they could answer questions on a standardized test; but the entire class, from the entrance of the guest speaker to the construction of the cornucopias and the starting of the Web pages, was engaged and actively participating in a history class activity that was fun.It is not often enough that middle school students are provided the opportunity to associate academics with fun. When they are able to make this association, it helps relieve frustration and revitalize their connection with school.

The next time class met, students were still in their cooperative groups, but now each student in the group did Internet research about one of the 20 questions they selected from the list we brainstormed regarding colonial lifestyle, agriculture, foods, Thanksgiving, cornucopias, food styling, and other food careers. Their homework from the previous class was to copy from the brainstorm list the five or six topics they thought they might want to research and to use books or the Internet to see which one or two topics were still interesting and had accessible information.

Before the next class, I added five questions (one per person in each group). The questions added were incorporated to avoid missing any of the curriculum standards for the unit. Each student, therefore, had his or her own high interest, personal choice question plus one of the five I added. The formalized list of questions was then projected on the overhead, and students wrote on note cards their first and second choices of which topics they would most like to further investigate.

To refresh students memories of the information they had already learned and to share new information they discovered doing their homework research, we did a roll call topic for taking attendance. When their names were called for roll, students were to respond with one thing they remembered from the cornucopia presentation the previous day. This strategy increases focus and recall.

Cooperation with group members was necessary to ensure all jobs needed to create the Web page would be done and research was not duplicated. The final project of each group was a Web page within the class Web page folder titled Cornucopia.Students were able to work through their learning style strengths and interests. They conferenced with me individually to determine if their topic of research was at their appropriate level of challenge.

Students received feedback from parents and other classes who visited the Web site where there was a place to write compliments, ask questions of the Web page creators, or add related information. By starting the colonial social studies topic with the experiential, artifact-centered, novel, and motivating guest speaker cornucopia experience, the students became curious, intrinsically motivated to ask questions, and they were willing to do the research. In addition, they were motivated to inquire further to satisfy their curiosity about the questions that they, as a class, had created, and the topics they individually selected. Instead of being passive recipients of the unit of study, they were co-creators of an investigation that was developed from their own interests and goals.

View Full Article
Add your own comment
DIY Worksheets
Make puzzles and printables that are educational, personal, and fun!
Matching Lists
Quickly create fun match-up worksheets using your own words.
Word Searches
Use your own word lists to create and print custom word searches.
Crossword Puzzles
Make custom crossword puzzles using your own words and clues.
See all Worksheet Generators