Education.com
Try
Brainzy
Try
Plus

# Geometry Study Guide for McGraw-Hill's ASVAB

By McGraw-Hill Professional
Updated on Jun 26, 2011

Practice problems for this study guide can be found at:

Geometry Practice Problems for McGraw-Hill's ASVAB

### Geometry On The ASVAB Mathematics Knowledge Test

Along with problems in algebra and probability, the ASVAB Mathematics Knowledge test also includes problems in geometry. To do well on this portion of the test, you'll need to know the basic geometry concepts taught in high school math courses. Topics tested include classifying angles, identifying different kinds of triangles and parallelograms, calculating perimeter and area, finding the circumference and area of circles, identifying different kinds of solid figures, and solving geometry word problems.

It is important that you do well on the Mathematics Knowledge test because it is one of the four ASVAB tests that are used to calculate the AFQT—your military entrance score. That's why it pays to spend time reviewing topics in algebra, probability, and geometry and tackling plenty of sample ASVAB Mathematics Knowledge questions.

The following pages offer a quick but important overview of the basic geometry you need to know to score well on the ASVAB. Make sure that you carefully review and test yourself on every topic covered in this section. Also make sure that you learn how to use all of the problem-solving methods presented in the examples.

### Points, Lines, and Angles

To work with geometry, you need to understand points, lines, and angles.

• A point is an exact location in space. It is represented by a dot and a capital letter.
• A line is a set of points that form a straight path extending in either direction without end. A line that includes points B and D is represented as follows: BD.
• A ray is a part of a line that has one endpoint and continues without end in the opposite direction. A ray that ends at point A and includes point B is represented as follows: .
• A line segment is a part of a ray or a line that connects two points. A line connecting points A and B is represented as follows: .

An angle is a figure formed by two rays that have the same endpoint. That endpoint is called the vertex (plural: vertices) of the angle. An example is shown below.

In this example, rays and have the same endpoint, which is point B. So point B is the vertex of the angle. The two line segments are called the sides of the angle. The symbol is used to indicate an angle.

An angle is labeled or identified in several different ways:

• By the vertex: B
• By the letters of the three points that form it: ABC or CBA. (The vertex is always the middle of the three letters.)

The measure of the size of an angle is expressed in degrees (°).

Classifying Angles There are three types of angles that you should know for the ASVAB test. They are right angles, acute angles, and obtuse angles.

Right Angles A right angle measures exactly 90°. Right angles are found in squares, rectangles, and certain triangles. ABC is a right angle.

Examples

The angles below are both right angles.

Acute Angles An angle that measures less than 90° is called an acute angle. STU is an acute angle.

Examples

The angles below are all acute angles.

Obtuse Angles An angle with a measure that is greater than 90° but less than 180° is called an obtuse angle. MNO is an obtuse angle.

Examples

The angles below are all obtuse angles.

Straight Angles A straight angle is one that measures exactly 180°. This kind of angle forms a straight line. EFG is a straight angle.

Classifying Pairs of Lines

Intersecting Lines Intersecting lines are lines that meet or cross each other.

Line DF intersects line GH at point E.

Parallel Lines Parallel lines are lines in a plane that never intersect.

Line MN is parallel to line OP. In symbols, MN || OP.

Perpendicular Lines Perpendicular lines intersect to form right angles.

Line ST is perpendicular to line UV. In symbols, ST UV.

Classifying Pairs of Angles

Adjacent Angles Adjacent angles have the same vertex and share one side. ABC and CBD are adjacent angles.

Complementary Angles Two adjacent angles whose measures total 90° are called complementary angles. MNO and ONP are complementary. Their measures total exactly 90°.

HINT Figures on the ASVAB are not necessarily drawn exactly to scale.

Examples

These two angles are complementary. Together they measure 90°.

Supplementary Angles Two adjacent angles whose measures total 180° are called supplementary angles. Together they make a straight line. KHG and GHJ are supplementary because together they add to 180° or a straight line.

Examples

The two angles below are supplementary. Together they measure 180° and form a straight line.

Vertical Angles Two angles formed by intersecting lines are called vertical angles if they are not adjacent. In the figure below, AED and BEC are vertical angles. AEB and DEC are also vertical angles. Vertical angles are often said to be "opposite" to each other, as shown in the figure.

Vertical angles are congruent. That is, their measures are the same. AED = BEC and AEB = DEC.

Examples

Identifying Congruent (Equal) Angles In the figure below, lines AC and DF are parallel. They are intersected by a third line GH. This third line is called a transversal.

This intersection creates eight angles. There are four pairs of vertical congruent angles:

ABH = EBC

ABE = HBC

DEB = GEF

DEG = BEF

Alternate Interior Angles In addition, four of these angles make two pairs of alternate interior angles. These are angles that are on opposite sides of the transversal, are between the two parallel lines, and are not adjacent. When parallel lines are intersected by a transversal, alternate interior angles are congruent. The two pairs are:

ABE = BEF

DEB = EBC

Alternate Exterior Angles Four of the angles also make two pairs of alternate exterior angles. These are angles that are on opposite sides of the transversal, are outside the two parallel lines, and are not adjacent. When parallel lines are intersected by a transversal, alternate exterior angles are congruent. The two pairs are:

ABH = GEF

HBC = DEG

Corresponding Angles Eight of the angles also make four pairs of corresponding angles. These are angles that are in corresponding positions. When parallel lines are intersected by a transversal, corresponding angles are congruent. The four pairs are:

ABH = DEB

HBC = BEF

ABE = DEG

EBC = GEF

HINT Angles count! Pay attention to these angle relationships! They are almost certain to appear in some form on the ASVAB.

Solving Angle Problems On the ASVAB, you will most likely be asked to use what you know about angles and angle relationships to solve problems. You may be asked to tell which angles in a figure are congruent. Or you may be given the measure of one angle and asked for the measure of an adjacent angle or some related angle in a figure.

Examples

In the following diagram, parallel lines MO and RT are intersected by transversal WV.

Which angle is congruent to MNW?

1. MNS
2. WNO
3. RSV
4. VST

Of the choices, the only one that is congruent to MNW is VST because they are alternate exterior angles.

Which angle is congruent to MNS?

1. RSV
2. SNO
3. VST
4. MNW

Of the choices, the only one that is congruent to MNS is RSV because they are corresponding angles.

If RSN measures 50°, what is the measure of RSV?

1. 90°
2. 110°
3. 130°
4. 150°

RSN and RSV are supplementary angles. That is, together they form a straight line and their measures add up to 180°. So if RSN measures 50°, then RSV measures 180 – 50 = 130°.