Bone Development, Bone Matrix, and Blood Calcium Homeostasis Help

based on 1 rating
By — McGraw-Hill Professional
Updated on Aug 30, 2011

Blood Calcium Homeostasis

Besides hematopoiesis and protection from physical trauma, another critical function of the endoskeleton is blood calcium homeostasis ; that is, the maintenance of a relatively constant blood calcium ion concentration. Symbolically speaking, we use Ca ++ to identify blood calcium ions , and brackets, [ ], to denote concentration. Thus, we have [Ca ++ ] to indicate the blood calcium ion concentration.

The blood calcium ion concentration, [Ca ++ ], within humans, is usually measured in units of mg/dLmilligrams ( MIH -lih- grams ) of calcium ions per deciliter ( DEH -sih- lee -ter) – of blood. A deciliter is one-“tenth” ( deci -) of a “liter.” And milligrams is a unit representing the number of “thousandths” ( milli -) of a “gram” of some substance. Hence, blood [Ca ++ ] in mg/dL denotes the number of milligrams of calcium ions present within one-tenth of a liter of blood. The normal or reference range for blood [Ca ++ ] is from a low of about 8.5 to a high of approximately 10.6 mg Ca ++ /dL of blood (in adults). Taking the same approach we employed for thermoregulation (Figure 13.2), we can use the S-shaped pattern, once again, to represent the homeostasis of blood calcium ion concentration, over time (see Figure 13.6). In naming this particular pattern of chemical concentration, we use the suffix, - emia (“blood condition of”), and the root or main idea, calc (“calcium”). We therefore have some form of calcemia (kal- SEE -me-uh), or “condition of calcium” (ion concentration) within the “blood.”

Skins and Skeletons Bone Development, Bone Matrix, and Blood Calcium Homeostasis

Fig. 13.6 Maintenance of normocalcemia over time.

Skins and Skeletons “Ain’t We Just Peachy?”: The Skin as Our Integument The Dermis As Our Tough Main “skin”

Fig. 13.2 Thermoregulation: Keeping our body heat within range.

Study suggestion: Using the same prefix as that employed to describe the normal-range body temperature pattern of Figure 13.2, name the blood calcium ion concentration pattern symbolized by Figure 13.6, above. When you are done building this term, check it with the correct term found in the caption for Figure 13.6.

Bone Development and Bone Matrix

“How is normocalcemia related to bone development and bone matrix?” you might well ask at this time. The answer is provided by a close look at Figure 13.7. During the development of a long bone, such as the femur (“thigh” bone), the process essentially begins with a cartilage model – a miniature version of the bone that is composed of cartilage, rather than bone tissue. Being soft and rubbery, cartilage is more suitable for life within the mother’s uterus (womb). As development progresses, however, blood vessels break into the cartilage model and bring osteoblasts ( AHS -tee-oh- blasts ) along with them. Osteoblasts are literally “bone” (oste) “formers” (-blasts).

The osteoblasts are large, spider-shaped cells that produce bone collagen fibers. After these tough collagen fibers are laid down, the osteoblasts then extract Ca ++ ions, phosphorus, and other chemicals from the bloodstream. Ossification ( ah -sih-fih- KAY -shun), the “process of bone formation,” then begins. During ossification, the osteoblasts supervise the depositing of sharp, needle-shaped crystals onto the surfaces of the bone collagen fibers. These sharp crystals are composed of calcium phosphate ( FAHS -fate), as well as a number of other minerals. Essentially, bone matrix appears within the cartilage model of the long bone, because the newly produced bone collagen fibers become heavily coated with the calcium phosphate crystals. Being snow-white, these crystals eventually hide the underlying collagen fibers. Viewed with the naked eye, the entire bone matrix thus appears snow-white. The bone matrix is white, like cement, of course, because white is the color of the many thousands of calcium crystals covering the collagen fibers in the matrix.

Skins and Skeletons Bone development and bone matrix

Fig. 13.7 Bone matrix appears during ossification.

By the time the child becomes an adult, her femur is mostly snow-white. You might think of all the bone matrix in the femur as essentially being a storage bank for calcium ions.

View Full Article
Add your own comment