The Biosphere Puts It Together Study Guide (page 2)

Updated on Sep 26, 2011


The connection between life and air is primarily what is called gas exchange. Every time you breathe, you take in the atmosphere, extract some of its oxygen, and add some carbon dioxide waste from your body's cells; then you exhale the gases back into the atmosphere. This process is called respiration. The opposite process, extracting carbon dioxide and adding oxygen, takes places during photosynthesis, performed by green plants such as oak trees and grasses. Other examples of gas exchange occur too, but in general, through gas exchange, life affects the atmosphere and the atmosphere affects life.


Because the ocean is so huge, it is convenient to think of this connection as between life and the ocean, but the same reasoning applies to life and any bodies of water, such as rivers and lakes. Organisms in the ocean exchange chemicals with the water as the organisms take in nutrients and give back wastes. Some of the connection is by gas exchange, because water contains dissolved gases, such as oxygen and carbon dioxide, but other exchanges involve the transfer of ions and actual bits of matter.

For example, creatures such as coral that build shells of calcium carbonate obtain their calcium as ions from the ocean water itself. In this way, the contents of the water become the bodies of organisms. The nitrogen and phosphorus in the ocean, wastes from creatures sink downward into the ocean and are consumed by bacteria. Thus, a cycling of matter takes place between ocean water and marine organisms.


The soil's mineral grains of sand, silt, and clay contain many chemicals required by land creatures to live. Some silicates contain calcium and phosphorus, which are both required elements for life. (Chemical elements required by living things are called essential elements or, more simply, nutrients.) Many creatures actively obtain essential elements from soil minerals by secreting substances to dissolve those minerals. In this process, these creatures perform chemical weathering. In addition, all creatures in the soil, from worms to bacteria, put forth wastes into the soil matrix, and the soil creatures breathe the air in the pores of the soil. So gas exchange occurs between life and the soil, too. Apparently, the exchanges between life and soil are very complex.


Rain descends from the atmosphere, bringing with it certain chemicals in the air, and wind can carry off fine particles into the atmosphere, but the primary exchange between the soil and air is gas exchange. Gases move from the atmosphere into the air pockets (pores) of the soil, and they also move in the opposite direction, from the pores of the soil up into the atmosphere. Some of the gases will be used by organisms in the soil, and some gases are generated by organisms in the soil.


As in the case with soil, rain can bring not only water, but other chemicals from air to the ocean, and winds from the continents carry dust particles that are dropped onto the ocean's surface. Like the soil, the primary exchange with the atmosphere is through the movement of gases, back and forth across the surface between ocean and atmosphere. It doesn't appear to our eyes that the ocean is chock full of gases, but it is. The back-and-forth movement affects gases such as nitrogen, carbon dioxide, oxygen, and many more.


The connection between soil and ocean is a one-way flux, because the only way for substances to go back from ocean to soil is through the reservoir of the atmosphere. But substances do move from soil to the ocean all the time, transported by ground water and, most noticeably, by streams and rivers. As we have seen, rivers carry substances that are in the form of particles and substances that are dissolved ions, such as salts and phosphate ions. Rivers supply the oceans with new materials every day.

When we put together a picture of the four reservoirs and six connections, we have what is known as a biogeochemical cycle. Biogeochemical cycles are the cycles of elements essential to life. These cycles are thus biological (bio) and include geological processes (geo) and chemical reactions (chemical).

The Carbon Cycle

The most important biogeochemical cycle is that of carbon, the essential element in the organic molecules of life. In addition, carbon dioxide is one of the atmosphere's important greenhouse gases, crucial for maintaining Earth's surface above the freezing point of water, and also of concern in the future as a cause of global warming. To understand the global carbon cycle, we will first review the amounts and forms of carbon in the four main reservoirs and then look at the fluxes between the reservoirs.


Carbon in life is present in all organic molecules, the most common of which are proteins, carbohydrates, lipids, and nucleic acids (DNA). Carbohydrates, for example, come in different types, such as sugars, starches, and celluloses (in land plants). How much carbon is there in life? For this, we need to total both land life and marine life. Land life by far dominates the number, totaling at about 700 billion tons of carbon. In contrast, marine life has a miniscule amount of carbon, only about 2 billion tons. The difference comes about because most land life consists of trees, with huge trunks and root systems. Trees are great biological reservoirs of carbon, much of which is in the molecular form called cellulose.

View Full Article
Add your own comment