Education.com
Try
Brainzy
Try
Plus

Electrons, Nucleus, and Atomic Structure Help

based on 1 rating
By — McGraw-Hill Professional
Updated on Aug 28, 2011

Electrons

In 1897, J.J. Thomson, a physicist from England, discovered negatively charged particles by removing all the air from a glass tube that was connected to two electrodes. One electrode was attached to one end of the tube and negatively (–) charged. It was called the cathode . The other end of the tube was attached to a positive (+) electrode and called the anode . A cathode ray tube uses a current to excite atoms of different gases contained in the tube. The electricity is beamed directionally through the length of the tube to the other electrode. By using this piece of equipment, scientists of a century ago began to separate the individual particles of atoms.

Through his experiments with several different colored gases, Thomson found that electrons had a negative charge and seemed to be common to all elements.

Electrons are small negatively charged sub-atomic particles that orbit around an atom’s positively charged nucleus.

However, since Thomson’s results showed that the overall charge of atoms was neutral in nature, something within the atom must be positive to counteract the negative charge. This something made the atom neutral.

Thomson came up with the “plum pudding” model of sub-particle arrangement made up of a blob of positively (+) charged particles, the pudding, and specks of negatively (–) charged particles floating around in it like raisins. He probably ate dessert right before or after working in his lab, so the idea came to him fairly easily. The plum pudding model of electrons and protons is shown in Figure 5.1 .

Atoms, Elements, and Compounds Electrons

Fig. 5.1. The plum pudding model of electrons and protons was not compact.

In 1906, Thomson was awarded the Nobel Prize for physics for his research and electrical work with gases. Later research found that an electron has a mass of 9.1 × 10 –31 kg and that it has a charge of 1.6 × 10 –19 Coulombs.

It wasn’t until a student of Thomson’s, Ernest Rutherford, started working to support his teacher’s ideas that the data for a plum pudding model just didn’t hold up. The floating negatively charged “raisins” acted differently in electrical current, for different elements, than what Thomson expected. This seemed to suggest they had different energy levels. (Maybe that is where the expression “the proof is in the pudding” came from.)

The Nucleus

It wasn’t until scientists discovered that the atom was not just a solid core, but made up of smaller building block sub-particles located in the nucleus, that some of their data made sense.

In 1907, Rutherford, teaching at Cambridge, developed the modern atomic concept. He received the Nobel Prize for Chemistry in 1908 and was knighted in 1914 for his work. (Whoever said chemistry was not a glory science?)

Through his experiments with radioactive uranium in 1911, Rutherford described a nuclear model. By bombarding particles through thin gold foil, he predicted that atoms had positive cores that were much smaller than the rest of the atom.

Instead of thinking that atoms were the same all the way through (“plum pudding” model) as Thomson suggested, Rutherford’s experiments pointed more toward something like a fruit with a small, dense pit. His experiments along with those of his student, Hans Geiger, showed that over 99% of the bombarded particles passed easily through the gold, but a few (one out of eight thousand) ricocheted at wild angles, even backwards. Figure 5.2 shows how Rutherford’s dense pit model of the nucleus might look.

Atoms, Elements, and Compounds The Nucleus

Fig. 5.2. Rutherford’s model of the nucleus had a tight central core.

Rutherford thought this scattering happened when positive nuclei of the test particles collided and were then repelled by heavy positively charged gold nuclei. It was later proven that Rutherford’s dense pit model was correct. When an accelerated alpha particle collided with an electron of a gold atom in a gas, a proton was knocked out of the nucleus.

Later research done along the same lines as Rutherford’s early work found that protons in a nucleus have a mass over 1800 times that of an electron. In fact, the positively charged nucleus of the atom that contained most of its mass was very dense and took up only a tiny part of an atom’s total space.

To get an idea of size, if an atomic nucleus were the size of a ping-pong ball, then the rest of the atom with its encircling negatively charged electrons would measure nearly 3 miles across. More precisely, nuclei are roughly 10 –12 meters in diameter. The total diameter of an atom is around 10 −8 meters or roughly 10,000 times larger.

View Full Article
Add your own comment