Our Cosmic Home Study Guide

Updated on Sep 25, 2011


 Look out into the sky at night. That's right–look out, not just up. Because when you look at the sparkling stars, you are gazing out across vast distances of space and time. You see light from stars that has taken tens, hundreds, even tens of thousands of years to reach your eyes. That's how vast space is, And one of the major, remarkable findings of astronomy is that the universe is expanding and has been expanding ever since it began with what is called the Big Bang.

Expanding Universe

Here is the outline of the events that occurred in the birth of our universe (see Figure 1.1).

Figure 1.1 The Expanding Universe

  • The Big Bang occurred about 13.7 billion years ago (with an uncertainty of a few hundred million years).
  • Time: Between the Big Bang and the one second mark. Temperature: Many billions of degrees above absolute zero. Event: Matter and antimatter nearly annihilated each other, leaving a small amount of residual matter.
  • Time: One second after the Big Bang. Temperature: About 1 billion degrees above absolute zero. Event: Protons, neutrons, and electrons exist as stable particles, or what physicists call subatomic particles, because they are basic constituents of atoms.
  • Time: 300,000 years after the Big Bang. Temperature: 3,000° above absolute zero (close to the surface temperature of our sun). Event: Atoms are born. This happened because the universe cooled enough for electrons to remain bound to nuclei of protons and neutrons. At this point, matter consisted of 76% hydrogen and 24% helium (with a trace of lithium). No other elements existed.
  • Time: Millions of years to a billion years after the Big Bang. Temperature: Much cooler. Event: First stars and galaxies are born. Other elements are created in the nuclear furnaces of stars.
  • Time: Today. Temperature: About 3 degrees above absolute zero (2.7 degrees Kelvin, in which a unit of temperature on the Kelvin scale is the same as a °C, a degree Centigrade or Celsius, except rather than the zero point references to the freezing temperature of water, zero Kelvin is absolute zero, about –476 degrees Fahrenheit).

Note this is only the average temperature. Event: We are here to discover this story.

Red Shifts

Visible light consists of a mix of wavelengths. Wavelength determines the color of light. Red light has longer wavelengths than green light has, for example. Green light has longer wavelengths than blue light. Study the diagram in Figure 1.2, which shows the spectrum of different wavelengths.

Figure 1.2 The Electromagnetic Spectrum

What we call visible light is only a small part of the electromagnetic spectrum, which consists of all waves that are both electric and magnetic. Note the relative sizes of the wavelengths and the fact that some wavelengths are too long for our eyes to see (infrared), whereas other wavelengths are too short (ultraviolet). 

All elements glow at particular wavelengths. Light that we normally see is a mixture of thousands and thousands of specific wavelengths. Scientists can examine light in great detail and see specific patterns of wavelengths, revealing specific elements that emitted the wavelengths. Thus, elements in space can be measured by the wavelengths that they emit. Furthermore, as light passes through gases that contain particular elements, the elements in the gases also absorb wavelengths in specific patterns. Thus, patterns of both emissions and absorptions can provide astronomers with information about the elements in outer space. When light from galaxies is examined, an interesting pattern is discovered. Study the diagrams in Figure 1.3.

Figure 1.3 The Red Shift

The top figure shows some of the locations of wavelengths of light given off by calcium on Earth. Note that they occur in a particular location and pattern on the spectrum. The bottom figure shows that in light from a distant galaxy, the characteristic pattern of calcium occurs at longer wavelengths. The calcium pattern has been shifted toward the red. This is the famous red shift.

The shift toward the red in the patterns of wavelengths that are characteristic of specific elements could occur only if the galaxies are moving away from the earth. As the galaxies move away, the light from them is stretched by the motion. (If the galaxies were moving toward us, the shift in the wavelengths of the patterns would have been toward the blue, which is not observed.)

The red shift is the primary evidence for the expanding universe. By extrapolating the expansion back in time, astronomers have concluded that the expansion started with all matter concentrated in a very small point and a single explosive event known as the Big Bang. Many other kinds of evidence have confirmed this theory.

Question: If all galaxies are moving away from us, does that imply that we are at the center?

Answer: No, because inhabitants of any galaxy would also observe that they appear to be at the center. It's like raisins in an expanding raisin cake. To each raisin, all the others are moving away.

View Full Article
Add your own comment