Education.com
Try
Brainzy
Try
Plus

Types of Rock Metamorphism Help

By — McGraw-Hill Professional
Updated on Sep 1, 2011

Burial Metamorphism

When layers of sedimentary rock become heavier and heavier, they get pushed further down into the crust, where they heat up and take on the temperature of the surrounding rock. We learned that when this happens, digenesis causes the transformation of sedimentary rock minerals and their textures. It happens at temperatures below 200°C.

As a result of increasing temperature and pressure in sedimentary rock layers, by ever heavier upper layers, diagenesis slowly continues and changes sedimentary rock layers over time through the process of low-grade burial metamorphism .

This type of metamorphism often causes partial mineral changes in sedimentary rock with some bedding layers left unaffected. Burial metamorphism usually causes wide folding of sedimentary rock layers within the greater changes of regional metamorphism.

Cataclastic Metamorphism

Cataclastic metamorphism takes place in the same areas as igneous activity along plate margins, oceanic, and continental hot spots, and deformed mountain ranges.

Tectonic plate movement causes high-pressure metamorphism by crushing and shearing rock away as a result of plate movement. When metamorphism happens along a fault, the transforming heat comes from intense friction and pressure going on between massive plates as they grind past each other.

Broken and metamorphic rock fragments found along a metamorphic rock fault are called fault breccia . This rock type has minerals that crystallize at either extreme temperature or the high pressure and low temperature associated with extreme frictional stress. This type of metamorphism is often part of regional metamorphism.

Regional Metamorphism

Regional metamorphism is the most widespread kind of metamorphism. This takes place over a much greater crustal area where both temperatures and pressures are high. Geologists use the term regional metamorphism when talking about large-scale metamorphism rather than that found locally near specific igneous rock intrusions or faults. Most regional metamorphism takes place in the deeper levels of the crust, along the margins of clashing and subducting tectonic plates, where rock is deformed and forced into a new direction. Regional metamorphism is fueled by the Earth’s internal heat.

Regional metamorphism happens when a chunk of strata originally at the surface becomes deeply buried and subjected to squeezing horizontal stresses. When this happens, the sedimentary rock cracks, buckles, and is folded gently or severely depending on the amount of ongoing pressure. As the folds are shoved further down, heating increases and crystals begin to form as the sedimentary rock is changed into metamorphic rock. The speed and length of sedimentary burial affects the temperature and pressure it sees. For example, if the sediment is pushed down quickly in a subduction zone, it doesn’t have time to heat up because of the high-pressure environment. However, if the downward movement is slow, the temperatures usually keep pace with the surrounding rock and mineral formation is slower, more complete, and gradual.

Regional metamorphism affects large structures across a broad stroke of the landscape. It involves the uplifting and down warping of stressed and deformed landmasses in the middle of mountain building. When both pressure and temperature increases are involved in regional metamorphism, it is called dynamothermal metamorphism .

Since regional metamorphism covers a large geographical area, the minerals and textures throughout the area are found in zones. Some areas may be near magma intrusion sources and contain zones of metamorphic and igneous rock. Some fairly undisturbed areas will look very different than those found nearer active tectonic areas. The main thing to remember is that in a broad region of metamorphism, the areas of changed rock can be found in horizontal and vertical positions.

Regional metamorphism produces rocks such as gneiss and schist . Regional metamorphism is caused by large geologic processes such as mountain building. These rocks, when exposed to the surface, show the unbelievable pressure that causes rocks to be bent and broken during the mountain uplifting process.

Schist rocks are metamorphic in origin. In other words, they started out as something else and were changed by external factors. Schists can be formed from basalt, an igneous rock; shale, a sedimentary rock; or slate, a metamorphic rock. Through tremendous heat and pressure, these rocks were transformed into this new kind of rock.

Schist is a medium-grade metamorphic rock. Medium-grade rock has been subjected to more heat and pressure than another rock such as slate. Slate, a low-grade metamorphic rock, needs lower temperatures for metamorphic changes to take place.

Schist is a coarse-grained rock with easily seen individual mineral grains. Since it has been compressed tighter than slate, schist is often found folded and crumpled. A lot of its original minerals have been transformed into larger flakes. Schists are usually named with reference to their original minerals. Biotite mica schist , hornblende schist , garnet mica schist , and talc schist are all different types of schist that come from different original minerals.

Gneiss rocks are also metamorphic in origin. Some gneiss rocks started out as granite, an igneous rock, but are changed by heat and pressure. Many gneiss rock samples have flattened mineral grains that have been smoothed flat by extreme heat and pressure and are aligned in alternating horizontal patterns.

Gneiss is a high-grade metamorphic rock. It has been the focus of much more heat and pressure than schist. Gneiss, a coarser rock form than schist, has distinct and easily seen banding. This banding is made up of alternating layers of different minerals. Gneiss can be formed from sedimentary rock such as sandstone or shale, or it can be created from the metamorphism of the igneous rock, granite. Since gneiss can come from granite, the same minerals found in gneiss are also found in granite. Along with mica and quartz, feldspar is the most important mineral found in gneiss. Gneiss is often used as a paving and building stone due to its attractive banding.

View Full Article
Add your own comment