Multivariable Expressions Study Guide

based on 1 rating
Updated on Oct 3, 2011

Introduction to Multivariable Expressions

The methods which I set forth do not require either constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.

—Joseph-Louis Lagrange (1736–1813) Italian Mathematician and Astronomer

In this lesson, you'll learn how to simplify and evaluate multivariable expressions.

The previous lesson (Single-Variable Expressions Study Guide) showed us that we do not need to simplify single-variable expressions. We can just substitute the value for the variable and evaluate. The same is true for multivariable expressions (expressions with more than one different variable), but you might find yourself performing many calculations if you do not simplify first.

To simplify a multivariable expression, we add, subtract, multiply, or divide all of the like terms until we are left with only unlike terms. Sometimes, we might take three, four, five, or even more steps to simplify an expression. Other times, there might not be a single operation we can perform. This occurs when all of the terms are unlike right from the start.


Simplify 3x2 + 5y + 2x2 – 3y.

This expression has two x2 terms and two y terms. We can simplify the expression into just two terms by combining the two x2 terms and the two y terms: 3x2 + 2x2 = 5x2 and 5y – 3y = 2y. Therefore, 3x2 + 5y+ 2x2 – 3y simplifies to 5x2 + 2y.


Simplify 2a3 – 4a + 5 + 9a – 6b.

There is only one a3 term, only one b term, and only one constant (5). None of these terms can be combined with any other terms. The only terms that can be combined are the a terms, –4a and 9a; –4a + 9a = 5a, so 2a3 – 4a + 5 + 9a – 6b simplifies to 2a3 + 5 + 5a – 6b. Remember, 2a3 and 5a are unlike terms. Although they have the same base, those bases have different exponents.


Simplify 4w – 6t + 2s.

These terms are all unlike, because they all have different bases. This expression is already in its simplest form.


When you think you have finished simplifying an expression, write all the terms that contain the same variable next to each other to be sure that there are no terms left that can be combined.


Simplify –7gh + 8g – 2h + 5gh.

This expression contains three kinds of terms: terms with a base of g, terms with a base of h, and terms with a base of gh. The two terms with a base of gh can be combined: –7gh + 5gh = –2gh. Then, –7gh + 8g – 2h + 5gh simplifies to –2gh + 8g – 2h.


Simplify 6x2 + 2x(x – 4y) + 3xy.

At first glance, this expression appears to contain four kinds of terms: x2 terms, x terms, y terms, and xy terms. However, the first step in simplifying this expression is to multiply: 2x(x – 4y) can be simplified using the distributive law. The distributive law says that a(b + c) = ab + ac. In words, the law says that the term outside the parentheses should be multiplied by each term inside the parentheses. To find 2x(x – 4y), multiply 2x by x and by –4y: 2x(x) = 2x2 and 2x(–4y) = –8xy. Our expression is now 6x2 + 2x2 – 8xy + 3xy. This expression has two x2 terms that can be combined and two xy terms that can be combined: 6x 2 + 2x2 = 8x2 and –8xy + 3xy = –5xy. The expression 6x2 + 2x(x – 4y) + 3xy simplifies to 8x2 –5xy.

View Full Article
Add your own comment