**Introduction**

Inductive reactance has its counterpart in the form of *capacitive reactance* . This, too, can be represented as a ray starting at the same zero point as inductive reactance but running off in the opposite direction, having negative ohmic values (Fig. 15-8). When the ray for capacitive reactance is combined with the ray for inductive reactance, a complete real-number line is the result, with ohmic values that range from the huge negative numbers, through zero, to huge positive numbers.

**Fig. 15-8** . Capacitive reactance can be represented on half-line or ray. There is no limit to how large it can get negatively, but it can never be positive.

**Capacitors And DC**

Imagine two large parallel metal plates, as described earlier. If you connect them to a source of dc, they draw a large amount of current at first as they become electrically charged. However, as the plates reach equilibrium, this current diminishes, and when the two plates attain the same potential difference throughout, the current is zero.

If the voltage of the battery or power supply is increased, a point is eventually reached at which sparks begin to jump between them. Ultimately, if the power supply can deliver the necessary voltage, this sparking, or *arcing* , becomes continuous. Then the pair of plates no longer acts like a capacitor. When the voltage across a capacitor is too great, the dielectric (whatever it is) no longer functions properly. This condition is known as *dielectric breakdown* .** **

In air-dielectric and vacuum-dielectric capacitors, dielectric breakdown is a temporary affair; it does not cause permanent damage. The device operates normally when the voltage is reduced, so the arcing stops. However, in capacitors with solid dielectric such as mica, paper, or tantalum, dielectric breakdown can burn or crack the dielectric, causing the component to conduct current even when the voltage is reduced below the arcing threshold. In such instances, the component is ruined.

**Capacitors And AC**

Suppose that the power source connected to a capacitor is changed from dc to ac. Imagine that you can adjust the frequency of this ac from a low initial value of a few hertz up to hundreds of hertz, then to many kilohertz, and finally to many megahertz or gigahertz.

At first, the voltage between the plates follows along with the voltage of the power source as the source polarity reverses over and over. However, the set of plates has a certain amount of capacitance. The plates can charge up fast if they are small and if the space between them is large, but they can’t charge instantaneously. As you increase the frequency of the ac source, there comes a point at which the plates do not get charged up very much before the source polarity reverses. The set of plates becomes sluggish. The charge does not have time to get established with each ac cycle.

At high ac frequencies, the voltage between the plates has trouble following the current that is charging and discharging them. Just as the plates begin to get a good charge, the ac current passes its peak and starts to discharge them, pulling electrons out of the negative plate and pumping electrons into the positive plate. As the frequency is raised, the set of plates starts to act more and more like a short circuit. Eventually, if you keep on increasing the frequency, the period of the wave is much shorter than the charging-discharging time, and current flows in and out of the plates in the same way as it would flow if the plates were shorted out.

Capacitive reactance is a quantitative measure of the opposition that the set of plates offers to ac. It is measured in ohms, just like inductive reactance and just like resistance. However, by convention, it is assigned negative values rather than positive ones. Capacitive reactance, denoted *X* _{C} in mathematical formulas, can vary from near zero (when the plates are huge and close together and/or the frequency is very high) to a few negative ohms to many negative kilohms or megohms.

Capacitive reactance varies with frequency. It gets larger negatively as the frequency goes down and smaller negatively as the frequency goes up. This is the opposite of what happens with inductive reactance, which gets larger (positively) as the frequency goes up. Sometimes capacitive reactance is talked about in terms of its absolute value, with the minus sign removed. Then you might say that *X* _{C} increases as the frequency decreases or that *X* _{C} diminishes as the frequency is raised. However, it is best if you learn to work with negative *X* _{C} values from the start.

### Ask a Question

Have questions about this article or topic? Ask### Related Questions

See More Questions### Popular Articles

- Kindergarten Sight Words List
- First Grade Sight Words List
- 10 Fun Activities for Children with Autism
- Signs Your Child Might Have Asperger's Syndrome
- Definitions of Social Studies
- A Teacher's Guide to Differentiating Instruction
- Curriculum Definition
- What Makes a School Effective?
- Theories of Learning
- Child Development Theories