Education.com
Try
Brainzy
Try
Plus

What Does Electricity Do? Help

based on 3 ratings
By — McGraw-Hill Professional
Updated on Sep 5, 2011

Introduction

Let's delve into the workings of things that can’t be observed directly. These include particles, and forces among them, that make it possible for you to light your home, communicate instantly with people on the other side of the world, and in general do things that would have been considered magical a few generations ago.

 When I took physics in middle school, they used 16-millimeter celluloid film projectors. Our teacher showed us several films made by a well-known professor. I’ll never forget the end of one of these lectures, in which the professor said, “We evaluate electricity not by knowing what it is, but by scrutinizing what it does.” This was a great statement. It really expresses the whole philosophy of modern physics, not only for electricity but also for all phenomena that aren’t directly tangible. Let’s look at some of the things electricity does.

Conductors

In some materials, electrons move easily from atom to atom. In others, the electrons move with difficulty. And in some materials, it is almost impossible to get them to move. An electrical conductor is a substance in which the electrons are highly mobile.

The best conductor, at least among common materials, at room temperature is pure elemental silver. Copper and aluminum are also excellent electrical conductors. Iron, steel, and various other metals are fair to good conductors of electricity. Some liquids are good conductors. Mercury is one example. Salt water is a fair conductor. Gases are, in general, poor conductors because the atoms or molecules are too far apart to allow a free exchange of electrons. However, if a gas becomes ionized, it can be a fair conductor of electricity.

Electrons in a conductor do not move in a steady stream like molecules of water through a garden hose. They pass from atom to atom (Fig. 12-1). This happens to countless atoms all the time. As a result, trillions of electrons pass a given point each second in a typical electric circuit.

Direct Current What Does Electricity Do? Conductors

Fig. 12-1 . In an electrical conductor, electrons pass easily from atom to atom. This drawing is greatly simplified.

Imagine a long line of people, each one constantly passing a ball to his or her neighbor on the right. If there are plenty of balls all along the line, and if everyone keeps passing balls along as they come, the result is a steady stream of balls moving along the line. This represents a good conductor. If the people become tired or lazy and do not feel much like passing the balls along, the rate of flow decreases. The conductor is no longer very good.

Insulators

If the people refuse to pass balls along the line in the preceding example, the line represents an electrical insulator . Such substances prevent electric currents from flowing, except in very small amounts under certain circumstances.

Most gases are good electrical insulators (because they are poor conductors). Glass, dry wood, paper, and plastics are other examples. Pure water is a good electrical insulator, although it conducts some current when minerals are dissolved in it. Metal oxides can be good insulators, even though the metal in pure form is a good conductor.

An insulating material is sometimes called a dielectric . This term arises from the fact that it keeps electric charges apart, preventing the flow of electrons that would equalize a charge difference between two places. Excellent insulating materials can be used to advantage in certain electrical components such as capacitors, where it is important that electrons not be able to flow steadily. When there are two separate regions of electric charge having opposite polarity (called plus and minus, positive and negative , or + and −) that are close to each other but kept apart by an insulating material, that pair of charges is called an electric dipole .

View Full Article
Add your own comment