Education.com
Try
Brainzy
Try
Plus

# Hyperbolas Help

based on 1 rating
By McGraw-Hill Professional
Updated on Oct 4, 2011

## Introduction to Hyperbolas

The last conic section is the hyperbola. Hyperbolas are formed when a slice is made through both parts of a double cone. The graph of a hyperbola comes in two pieces called branches . Like ellipses, hyperbolas have a center, two foci, and two vertices. Hyperbolas also have two slant asymptotes. The definition of a hyperbola involves the distance between points on the graph and two fixed points.

DEFINITION: A hyperbola is the set of all points such that the difference of the distance between a point and two fixed points (the foci) is constant.

For example, the foci for are (−5, 0) and (5, 0). For any point on the hyperbola, the distance between this point and one focus minus the distance between the same point and the other focus is 6. Two points on the hyperbola are .

And

Equations of hyperbolas come in one of two forms.

If the x 2 term is positive, one branch opens to the left and the other to the right. If the y 2 term is positive, one branch opens up and the other down. The formulas for these two forms are in Figures 12.21 and 12.22.

Fig. 12.21

Fig. 12.22

## Sketching Hyperbolas on a Graph

We can sketch a hyperbola by plotting the vertices and sketching the asymptotes, using dashed lines. We should also plot two points to the left and two points to the right of the vertices.

#### Example

• Sketch the graph for .
• Because y 2 is positive, we will use the information in Figure 12.22 . The center is (0, 0), a = 2, and b = 1. The vertices are ( h , k + a ) = (0, 0 + 2) = (0, 2) and ( h , ka ) = (0, 0 − 2) = (0, −2). The asymptote formulas are . Using our numbers for h, k, a , and b , we have y = −2 x and y = 2x . We will use x = 4 and x = −4 for our extra points. If we let x = 4 or x = −4, we get two y -values, . These give us four more . (see Figure 12.23.)

Fig. 12.22

Fig. 12.23

## Finding the Center, Vertices, Foci, and Asymptotes of a Hyperbola

In the next problem, we will find the center, vertices, foci, and asymptotes for given hyperbolas. Once we have determined whether x 2 is positive or y 2 is positive, we can decide on which formulas to use, those in Figure 12.21 or Figure 12.22.

Fig. 12.21

Fig. 12.22

#### Examples

Find the center, vertices, foci, and asymptotes for the hyperbola.

• Because x 2 is positive, we will use the information in Figure 12.21 .

h = −7, k = −4, a = 6, b = 8,

Center: (−7, −4)

Vertices: ( ha , k ) = (−7 −6, −4) = (−13, −4) and ( h + a , k ) = (−7 + 6, −4) = (−1, −4)

Foci: ( hc , k ) = (−7 − 10, −4) = (−17, −4) and ( h + c , k ) = (−7 + 10, −4) = (3, −4)

Asymptotes: and

• Because y 2 is positive, we need to use the information in Figure 12.22 .

h = 1, k = 0, a = 12, b = 5,

Center: (1, 0)

Vertices: ( h , ka ) = (1, 0−12) = (1, −12) and ( h , k + a ) = (1, 0 + 12) = (1, 12)

Foci: ( h , kc ) = (1, 0 − 13) = (1, −13) and ( h , k + c ) = (1, 0 + 13) = (1, 13)

Asymptotes: and

150 Characters allowed

### Related Questions

#### Q:

See More Questions

### Today on Education.com

Top Worksheet Slideshows