How Does Technology Facilitate Learning? (page 5)

By — Pearson Allyn Bacon Prentice Hall
Updated on Jul 20, 2010

How Technologies Foster Thinking

Why do these uses of technology foster meaningful learning? It is because they require that students think and reason. In this book, we argue that students do not learn from teachers or from technologies. Rather, students learn from thinking—thinking about what they are doing or what they did, thinking about what they believe, thinking about what others have done and believe, thinking about the thinking processes they use—just thinking and reasoning. Thinking mediates learning. Learning results from thinking. What kinds of thinking are fostered when learning with technologies?


Causal reasoning is one of the most basic and important cognitive processes that underpin all higher-order activities, such as problem solving. Hume called causality the “cement of the universe” (Hume, 1739/2000). Reasoning from a description of a condition or set of conditions or states of an event to the possible effect(s) that may result from those states is called prediction. A baseball pitcher predicts where the ball will go by the forces that he or she applies when pitching the ball. When an outcome or state exists for which the causal agent is unknown, then an inference is required. That is, reasoning backward from effect to cause requires the process of inference. A primary function of inferences is diagnosis. For example, based on symptoms, historical factors, and test results of patients who are thought to be abnormal, a physician attempts to infer the cause(s) of that illness state. Thinking causally is also required for making explanations. Explaining how things work requires learner to identify all the causal connections among the things being explained.

Causal thinking is really more complex than learners understand. In order to be able to understand and apply causal relationships, learners must be able to quantify attributes of causal relationships (direction, strength, probability, and duration) as well as be able to explain the underlying mechanisms describing the relationship (Jonassen & Ionas, 2007). Why does a force applied to a ball cause it to move in certain direction?


If you distill cognitive psychology into a single principle, it would be to use analogies to convey and understand new ideas. That is, understanding a new idea is best accomplished by comparing and contrasting it to an idea that is already understood. In an analogy, the properties or attributes of one idea (the analogue) are mapped or transferred to another (the source or target). Single analogies are also known as synonyms or metaphors. One word conveys attributes to the other, often using the word “like” or “as” as a connector. Following Hurricane Katrina in 2005, New Orleans was said to be inundated with a “toxic gumbo.” Gumbo is a complex New Orleans–style soup that contains a variety of ingredients. The waters that surrounded New Orleans contained a complex variety of toxic substances—thus metaphor as analogy.

People most commonly think of syllogism as analogies. A syllogism is a four-part analogy. For example, love is to hate as peace is to ———. The analogy makes sense only if the structural characteristics of the first analogy can be applied to the second.

In using technologies to represent their understanding, students consistently are required to engage in the comparison–contrast reasoning required to structurally map the attributes of one or more idea to others, that is, to draw an analogy.


Using technologies as tools to learn with entails learners representing what they know, that is, teaching the computer. To do so, learners must express what they know. Using different tools requires learners to express what they know in different ways. Technologies can be used to help learners express themselves in writing. Learners can express themselves using a variety of tools, such as databases, spreadsheets, and expert systems, each tool requiring different forms of expression. Ttechnologies can support verbal expression, while chapter 9 focuses on visual expressions. Contrast these varieties of expressions to those required by state-mandated tests, where students’ only form of expressions is the selection of answer a, b, c, or d.


Experiences result in the most meaningful and resistant memories. We can recall with clarity experiences that we have had many years before. The primary medium for expressing experiences is the story. Stories are the oldest and most natural form of sense making. Stories are the “means [by] which human beings give meaning to their experience of temporality and personal actions” (Polkinghorne, 1988, p. 11). Cultures have maintained their existence through different types of stories, including myths, fairy tales, and histories. Humans appear to have an innate ability and predisposition to organize and represent their experiences in the form of stories. Learning with technologies engages stories in a couple ways. First, the experiences that students have while using technologies to represent their understanding are meaningful and memorable. Second, students may seek out stories and use technologies to convey them.

Problem Solving

Using technologies to express and convey learner knowledge all entail different kinds of problems solving. Learning with technologies requires that students make myriad decisions while constructing their representations. Deciding what information to include and exclude, how to structure the information, and what form it should take are all complex decision-making processes. Students also engage in a lot of design problem solving while constructing their interpretations. They also must solve rule-using problems in how to use software. When learners are solving problems, they are thinking deeply and are engaged in meaningful learning. What they learn while doing so will be so much better understood and remembered than continuously preparing to answer multiple-choice test questions.

View Full Article
Add your own comment