Science project

What is Condensation?

Ever wonder where those little drops of water that form on the outside of your cold can of soda come from? That’s condensation!  The cold aluminum can causes water vapor in the air to cool down and form tiny beads of water on the can’s surface. The molecules in these beads of water are grouped far more closely together than when they were in their gas phase. So, in an enclosed space, what kind of effect do you think condensation would have on pressure?


What happens when we let cooling steam condense in a bottle that has a water-filled balloon placed over its neck?


  • 1 3-gallon water bottle with a wide neck (the kind used in office water coolers)
  • Empty water balloons (keep more than one handy in case of breakage)
  • Water
  • Stove
  • Oven Mitt
  • Pot or tea kettle for boiling water
  • Adult Helper


  1. Set a kettle or pot of water to boil on the stove.
  2. While you’re waiting for your water to boil, fill your balloon full of water using a faucet or a hose. Don’t overinflate the balloon! It should be too large to slip through the neck of the bottle through gravity alone, but not so large that it would burst were it to get pushed through.
  3. Once your water reaches a rapid boil, carefully pour the whole kettle into your bottle.
  4. Place the filled water balloon in the neck of the bottle.
  5. Stand back and watch what happens. You may need to wait a few minutes.
  6. Record your results.
  7. Draw what you think the water molecules looked like at each phase of the experiment.


After a minute or two, the balloon should have been pushed into the bottle.


When the water was heated, the water molecules began to move rapidly, turning into water’s gas phase: steam. When in a gas phase, water molecules are spaced much further apart and take up more space. The pressure inside the bottle and the pressure outside the bottle reach a state of equilibrium, meaning that the pressure is the same. Why? With an open bottle, expanding gas can move from one area into another. There’s nothing to keep the steam inside the bottle from flowing out into the surrounding air.

Here’s when everything changes: when the water stops boiling, and the steam starts cooling down. The water molecules start condensing—that is, they start turning from steam back into water. When matter turns from its gas phase back into its liquid phase, the molecules take up much less space, and exert far less pressure. But the air outside the bottle didn’t change, and it’s still exerting pressure of its own! Now, we have what is called a pressure gradient instead of a state of equilibrium, because the air can’t flow freely into the bottle with the balloon in its way! So what happens? The air pressure pushes the water balloon through the neck of the bottle.

How can you take this experiment further? Good places to start include changing the size of the balloon or changing the amount of water in the bottle. The great thing about scientific experimentation is that the possibilities are endless.

Disclaimer and Safety Precautions provides the Science Fair Project Ideas for informational purposes only. does not make any guarantee or representation regarding the Science Fair Project Ideas and is not responsible or liable for any loss or damage, directly or indirectly, caused by your use of such information. By accessing the Science Fair Project Ideas, you waive and renounce any claims against that arise thereof. In addition, your access to's website and Science Fair Project Ideas is covered by's Privacy Policy and site Terms of Use, which include limitations on's liability.

Warning is hereby given that not all Project Ideas are appropriate for all individuals or in all circumstances. Implementation of any Science Project Idea should be undertaken only in appropriate settings and with appropriate parental or other supervision. Reading and following the safety precautions of all materials used in a project is the sole responsibility of each individual. For further information, consult your state's handbook of Science Safety.

Add to collection

Create new collection

Create new collection

New Collection


New Collection>

0 items