Smart Card? A Study of ElectroMagnetic Fields Produced by RFID Transmitters (page 3)

based on 27 ratings
Author: Jeff K.


When not in use, the RFID Transmitters will produce an ElectroMagnetic Field that is slightly lower than the average safety limit of 3 milligausses. However, after scanning, the RFID Transmitters will produce an ElectroMagnetic Field that is slightly greater than the average safety limit of 3 milligausses.

Experimental Design

The independent variable was the RFID transmitter; the dependent variable was the ElectroMagnetic field produced by the RFID device. The testing materials, such as RFID Cards, were kept the same throughout the experiment. For a control, the TriField 100XE meter was calibrated using a known EMF source (such as a computer monitor) to check the machineʼs ability to accurately calculate the deviceʼs EMF. The data was measured in milligausses (equal to 10-7 Teslas). Data was measured and recorded in the Data Logbook.



Note: The graphs above shows the results, once averaged, for the before and during/after tests. This is separated by device. The shaded gray region represents the suspected range wherein dangerous biological effects can occur. The dark line corresponds with 3 MG, the point at which most scientists believe EMF-related effects begin.


Based on the data, both hypotheses were proven wrong. Prior to scanning the cards, no device surpassed even the most extreme EMF danger measurement (which states that biological effects begin to occur at 1.75 MG). Thus, when not in use, the RFID Transmitters produced a magnetic field that was completely safe. During the scan of the cards, every device surpassed even the most conservative EMF danger measurement (which states that biological effects begin to occur at 5 MG). Thus, when scanning an RFID card, the ElectroMagnetic Field produced by the RFID Transmitter was dangerous and known to cause biological effects.

Experimental Future

There are many possible future adaptations of this experiment. One possible study could directly measure the radiation (as measured in Specific Absorption Rate, or, SAR) from EMFs. This would directly explain why various biological effects occur from exposure to various ElectroMagnetic Fields. In addition, testing other EMF sources (such as microwaves and cell phones) could determine, as some have claimed, whether exposure to EMFs through RFID devices is negligible when compared to these other sources.

Resources and References

Arumugam, Darmindra D., and Daniel W. Engels. "Impacts of RF Radiation on the Human Body in a Passive RFID Environment." Thesis. University of Texas at Arlington, Texas, USA, 2009. Web. 10 Jan. 2011.

Brown, Dennis E. RFID Implementation. New York: McGraw-Hill Communications, 2007. Print.

Bonsor, Kevin, and Candace Keener. "How RFID Works." Howstuffworks. Discovery Network. Web. 10 Jan. 2011.

Department of Energy. Study of Biological Effects Caused by ElectroMagnetic Fields. Rep. Washington, DC: United States Department of Energy, 1989. Print.

"Electric & Magnetic Fields." National Institute of Environmental Health Sciences (NIEHS). Web. Mar. 2011. . "Electric And Magnetic Field (EMF) Radiation from Power Lines." US Environmental Protection Agency. Web. Mar. 2011.


Add your own comment
DIY Worksheets
Make puzzles and printables that are educational, personal, and fun!
Matching Lists
Quickly create fun match-up worksheets using your own words.
Word Searches
Use your own word lists to create and print custom word searches.
Crossword Puzzles
Make custom crossword puzzles using your own words and clues.
See all Worksheet Generators